Lab 1 Notes

Adam Shen

The given Pareto distribution is

$$
f(x)=\frac{\alpha 3^{\alpha}}{x^{\alpha+1}}, \quad x>3, \quad \alpha>1,
$$

and zero otherwise.
(i) Find the cdf.

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} \frac{\alpha 3^{\alpha}}{t^{\alpha+1}} d t \\
& =\int_{3}^{x} \alpha 3^{\alpha} t^{-(\alpha+1)} d t \\
& =\left.\frac{\alpha 3^{\alpha} t^{-(\alpha+1)+1}}{-(\alpha+1)+1}\right|_{t=3} ^{t=x} \\
& =-\left.3^{\alpha} t^{-\alpha}\right|_{t=3} ^{t=x} \\
& =-3^{\alpha}\left(x^{-\alpha}-3^{-\alpha}\right) \\
& =-\frac{3^{\alpha}}{x^{\alpha}}+1 \\
& =1-\left(\frac{3}{x}\right)^{\alpha}, \quad x>3
\end{aligned}
$$

and $F(x)=0$ for $x \leq 3$.
(ii) Find the quantile function.

Recall that the cdf was defined as

$$
F(x)=\mathbf{P}(X \leq x)=p,
$$

where x is the quantile and is given, and p is the probability that we need to often need to calculate. With the quantile function, the conditions are reversed:

$$
Q(p)=x \quad \text { such that } \quad \mathbf{P}(X \leq x)=p
$$

where p is given is x is the value we seek. If $F(x)$ is a one-to-one function, then $Q(p)$ is simply the inverse of $F(x)$.

Using the cdf from (i), we solve for x :

$$
\begin{aligned}
p & =1-\left(\frac{3}{x}\right)^{\alpha} \\
\left(\frac{3}{x}\right)^{\alpha} & =1-p \\
\frac{3}{x} & =(1-p)^{1 / \alpha} \\
x & =\frac{3}{(1-p)^{1 / \alpha}}
\end{aligned}
$$

Therefore, our quantile function is:

$$
Q(p)=\frac{3}{(1-p)^{1 / \alpha}}, \quad 0<p<1
$$

